Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140965, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739110

RESUMO

The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.


Assuntos
Bacteriófagos , Príons , Animais , Proteínas Priônicas/química , Bacteriófagos/metabolismo , Príons/química , Chaperonina 60/química , Trifosfato de Adenosina
2.
Nat Commun ; 14(1): 8205, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081816

RESUMO

The T5 family of viruses are tailed bacteriophages characterized by a long non-contractile tail. The bacteriophage DT57C is closely related to the paradigmal T5 phage, though it recognizes a different receptor (BtuB) and features highly divergent lateral tail fibers (LTF). Considerable portions of T5-like phages remain structurally uncharacterized. Here, we present the structure of DT57C determined by cryo-EM, and an atomic model of the virus, which was further explored using all-atom molecular dynamics simulations. The structure revealed a unique way of LTF attachment assisted by a dodecameric collar protein LtfC, and an unusual composition of the phage neck constructed of three protein rings. The tape measure protein (TMP) is organized within the tail tube in a three-stranded parallel α-helical coiled coil which makes direct contact with the genomic DNA. The presence of the C-terminal fragment of the TMP that remains within the tail tip suggests that the tail tip complex returns to its original state after DNA ejection. Our results provide a complete atomic structure of a T5-like phage, provide insights into the process of DNA ejection as well as a structural basis for the design of engineered phages and future mechanistic studies.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , DNA/metabolismo
3.
Plants (Basel) ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140427

RESUMO

Cell-to-cell transport of plant viruses through plasmodesmata (PD) requires viral movement proteins (MPs) often associated with cell membranes. The genome of the Hibiscus green spot virus encodes two MPs, BMB1 and BMB2, which enable virus cell-to-cell transport. BMB2 is known to localize to PD-associated membrane bodies (PAMBs), which are derived from the endoplasmic reticulum (ER) structures, and to direct BMB1 to PAMBs. This paper reports the fine structure of PAMBs. Immunogold labeling confirms the previously observed localization of BMB1 and BMB2 to PAMBs. EM tomography data show that the ER-derived structures in PAMBs are mostly cisterns interconnected by numerous intermembrane contacts that likely stabilize PAMBs. These contacts predominantly involve the rims of the cisterns rather than their flat surfaces. Using FRET-FLIM (Förster resonance energy transfer between fluorophores detected by fluorescence-lifetime imaging microscopy) and chemical cross-linking, BMB2 is shown to self-interact and form high-molecular-weight complexes. As BMB2 has been shown to have an affinity for highly curved membranes at cisternal rims, the interaction of BMB2 molecules located at rims of adjacent cisterns is suggested to be involved in the formation of intermembrane contacts in PAMBs.

4.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138989

RESUMO

Regulatory adenine nucleotide-binding cystathionine ß-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.


Assuntos
Cistationina beta-Sintase , Pirofosfatases , Pirofosfatases/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Domínio Catalítico , Proteínas de Bactérias/metabolismo , Nucleotídeos
5.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003588

RESUMO

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-ß (Aß) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aß augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 µM of Aß1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aß1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aß1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 µM of Aß1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase , Peptídeos beta-Amiloides , Butirilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia
6.
Viruses ; 15(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851694

RESUMO

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by ß-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the ß-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while ß-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of ß-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Vacinas de Produtos Inativados , COVID-19/prevenção & controle , Soroterapia para COVID-19 , Vacinas contra COVID-19 , Pandemias , Propiolactona/farmacologia , SARS-CoV-2 , Formaldeído
7.
Antiviral Res ; 209: 105508, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581049

RESUMO

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC50 values below 1.9 and 1.3 nM, respectively, and Chikungunya virus (CHIKV) in cytopathic effect inhibition test with EC50 values below 3.2 µM. The compounds are active against respiratory viruses as well: severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in cytopathic effect inhibition test and influenza A virus (IAV) in virus titer reduction experiments are inhibited - EC50 values below 51 nM and 2.2 µM, respectively. The activity stems from the presence of a hydrophobic perylene core, and all of the synthesized compounds exhibit comparable 1O2 generation rates. Nonetheless, activity can vary by orders of magnitude depending on the hydrophilic part of the molecule, suggesting a complex mode of action. A time-of-addition experiment and fluorescent imaging indicate that the compounds inhibit viral fusion in a dose-dependent manner. The localization of the compound in the lipid bilayers and visible damage to the viral envelope suggest the membrane as the primary target. Dramatic reduction of antiviral activity with limited irradiation or under treatment with antioxidants further cements the idea of photoinduced ROS-mediated viral envelope damage being the mode of antiviral action.


Assuntos
COVID-19 , Perileno , Humanos , Antivirais/farmacologia , Antivirais/química , Uracila/farmacologia , Perileno/farmacologia , SARS-CoV-2
8.
Front Mol Biosci ; 9: 1048117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483541

RESUMO

Human FACT (FACT) is a multifunctional histone chaperone involved in transcription, replication and DNA repair. Curaxins are anticancer compounds that induce FACT-dependent nucleosome unfolding and trapping of FACT in the chromatin of cancer cells (c-trapping) through an unknown molecular mechanism. Here, we analyzed the effects of curaxin CBL0137 on nucleosome unfolding by FACT using spFRET and electron microscopy. By itself, FACT adopted multiple conformations, including a novel, compact, four-domain state in which the previously unresolved NTD of the SPT16 subunit of FACT was localized, apparently stabilizing a compact configuration. Multiple, primarily open conformations of FACT-nucleosome complexes were observed during curaxin-supported nucleosome unfolding. The obtained models of intermediates suggest "decision points" in the unfolding/folding pathway where FACT can either promote disassembly or assembly of nucleosomes, with the outcome possibly being influenced by additional factors. The data suggest novel mechanisms of nucleosome unfolding by FACT and c-trapping by curaxins.

9.
Biomedicines ; 10(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36289740

RESUMO

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus Flavivirus (family Flaviviridae). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA). All methods confirmed that the particles were monodisperse and that their mean size was ~50 nm. Cryo-EM data allowed us to obtain a 3D electron density model of the virus with clearly distinguishable E protein molecules. STEM-EELS analysis detected phosphorus in the particles, which was interpreted as an indicator of RNA presence. Altogether, the described analytical procedures can be valuable for the characterization of inactivated vaccine virus samples.

10.
Biochem Biophys Res Commun ; 622: 136-142, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35849955

RESUMO

Controversial information about the role of chaperonins in the amyloid transformation of proteins and, in particular, α-synuclein, requires a more detailed study of the observed effects due to the structure and functional state of various chaperonins. In this work, two types of phage chaperonins, the double-ring EL and the single-ring OBP, were shown to stimulate α-synuclein fibrillation in an ATP-dependent manner. Chaperonin morphology does not affect the stimulation of α-synuclein amyloid transformation. However, the ATP-dependent effect of single- and double-ring chaperonins on this process differs, which can lead to different morphology of resulting fibrils. Fibril formation seems to proceed without substrate encapsulation in the internal cavity of chaperonin, because of the structural features of phage chaperonins and their ability to function without co-chaperonins. In the absence of ATP, both chaperonins, on the contrary, completely prevent α-synuclein amyloid transformation, which provides the possibility of their use as anti-amyloid agents, in the form of incomplete molecules or mutants with suppressed ATPase activity.


Assuntos
Bacteriófagos , alfa-Sinucleína , Trifosfato de Adenosina/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas , Chaperoninas , alfa-Sinucleína/metabolismo
11.
Microsc Res Tech ; 85(2): 562-569, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34498784

RESUMO

The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the ß-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation. The samples prepared using SEC and IEC retained more spikes on the surface than the ones prepared using ultracentrifugation, as confirmed by TEM and AFM. TEM showed that the spike (S) proteins were in the pre-fusion conformation. Notably, the S proteins could be recognized by specific monoclonal antibodies. Analytical TEM showed that the inactivated virions retained nucleic acid. Altogether, we demonstrated that the inactivated SARS-CoV-2 virions retain the structural features of native viruses and provide a prospective vaccine candidate.


Assuntos
COVID-19 , Propiolactona , Animais , Chlorocebus aethiops , Humanos , Pandemias , SARS-CoV-2 , Vacinas de Produtos Inativados , Células Vero
12.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445356

RESUMO

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Assuntos
Ferritinas/genética , Poríferos/genética , Animais , Sequência Conservada , Ferritinas/química , Ferritinas/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/classificação , Poríferos/metabolismo , Domínios Proteicos/genética , Análise de Sequência de DNA , Transcriptoma/fisiologia
13.
Biochemistry (Mosc) ; 86(2): 230-240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33832421

RESUMO

Potato virus A (PVA) protein coat contains on its surface partially unstructured N-terminal domain of the viral coat protein (CP), whose structural and functional characteristics are important for understanding the mechanism of plant infection with this virus. In this work, we investigated the properties and the structure of intact PVA and partially trypsinized PVAΔ32 virions using small-angle X-ray scattering (SAXS) and complimentary methods. It was shown that after the removal of 32 N-terminal amino acids of the CP, the virion did not disintegrate and remained compact, but the helical pitch of the CP packing changed. To determine the nature of these changes, we performed ab initio modeling, including the multiphase procedure, with the geometric bodies (helices) and restoration of the PVA structure in solution using available high-resolution structures of the homologous CP from the PVY potyvirus, based on the SAXS data. As a result, for the first time, a low-resolution structure of the filamentous PVA virus, both intact and partially degraded, was elucidated under conditions close to natural. The far-UV circular dichroism spectra of the PVA and PVAΔ32 samples differed significantly in the amplitude and position of the main negative maximum. The extent of thermal denaturation of these samples in the temperature range of 20-55°C was also different. The data of transmission electron microscopy showed that the PVAΔ32 virions were mostly rod-shaped, in contrast to the flexible filamentous particles typical of the intact virus, which correlated well with the SAXS results. In general, structural analysis indicates an importance of the CP N-terminal domain for the vital functions of PVA, which can be used to develop a strategy for combating this plant pathogen.


Assuntos
Proteínas do Capsídeo/metabolismo , Potyvirus/ultraestrutura , Vírion/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Potyvirus/metabolismo , Espalhamento a Baixo Ângulo , Vírion/metabolismo , Difração de Raios X
14.
Viruses ; 12(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096802

RESUMO

The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.


Assuntos
Fagos de Pseudomonas/ultraestrutura , Pseudomonas aeruginosa/ultraestrutura , Pseudomonas aeruginosa/virologia , DNA Bacteriano/análise , DNA Viral/análise , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética
15.
Int J Biol Macromol ; 157: 544-552, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344079

RESUMO

A bioinformatics analysis of the currently predicted GroEL-like proteins encoded by bacteriophage genomes was carried out in comparison with the phage double-ring EL and single-ring OBP chaperonins, previously described by us, as well as with the known chaperonins of group I and group II. A novel GroEL-like protein predicted in the genome of phage AR9 Bacillus subtilis was expressed in E. coli cells, purified and characterised by various physicochemical methods. As shown by native electrophoresis, analytical ultracentrifugation and single-particle electron microscopy analysis, the putative AR9 chaperonin is a single-ring heptamer. Like the EL and OBP chaperonins, the new AR9 chaperonin possesses chaperone activity and does not require co-chaperonin to function. It was shown to prevent aggregation and provide refolding of the denatured substrate protein, endolysin, in an ATP-dependent manner. A comparison of its structural and biochemical properties with those of the EL and OBP chaperonins suggests outstanding diversity in this group of phage chaperonins.


Assuntos
Bacteriófagos/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Chaperoninas/isolamento & purificação , Clonagem Molecular , Ativação Enzimática , Expressão Gênica , Modelos Moleculares , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Ultracentrifugação , Proteínas Virais/isolamento & purificação
16.
Biochim Biophys Acta Proteins Proteom ; 1867(9): 840-853, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228587

RESUMO

Multiple complexes of 20S proteasomes with accessory factors play an essential role in proteolysis in eukaryotic cells. In this report, several forms of 20S proteasomes from extracts of Spodoptera frugiperda (Sf9) cells were separated using electrophoresis in a native polyacrylamide gel and examined for proteolytic activity in the gel and by Western blotting. Distinct proteasome bands isolated from the gel were subjected to liquid chromatography-tandem mass spectrometry and identified as free core particles (CP) and complexes of CP with one or two dimers of assembly chaperones PAC1-PAC2 and activators PA28γ or PA200. In contrast to the activators PA28γ and PA200 that regulate the access of protein substrates to the internal proteolytic chamber of CP in an ATP-independent manner, the 19S regulatory particle (RP) in 26S proteasomes performs stepwise substrate unfolding and opens the chamber gate in an ATP-dependent manner. Electron microscopic analysis suggested that spontaneous dissociation of RP in isolated 26S proteasomes leaves CPs with different gate sizes related presumably to different stages in the gate opening. The primary structure of 20S proteasome subunits in Sf9 cells was determined by a search of databases and by sequencing. The protein sequences were confirmed by mass spectrometry and verified by 2D gel electrophoresis. The relative rates of sequence divergence in the evolution of 20S proteasome subunits, the assembly chaperones and activators were determined by using bioinformatics. The data confirmed the conservation of regular CP subunits and PA28γ, a more accelerated evolution of PAC2 and PA200, and especially high divergence rates of PAC1.


Assuntos
Proteínas de Insetos/química , Chaperonas Moleculares/química , Complexo de Endopeptidases do Proteassoma/química , Spodoptera/enzimologia , Animais , Cromatografia Líquida , Proteínas de Insetos/isolamento & purificação , Espectrometria de Massas , Chaperonas Moleculares/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA